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Abstract
We use the theory of the fluctuating electromagnetic field to calculate the
frictional drag force between nearby two- and three-dimensional electron
systems. The frictional drag results from coupling via a fluctuating
electromagnetic field, and can be considered as the dissipative part of the van
der Waals interaction. Unlike in other similar calculations for semiconductor
two-dimensional systems, here retardation effects are included. We consider the
dependence of the frictional drag force on the temperature T , electron density
and separation d . We find that retardation effects become the dominating
factor for high electron densities ns , corresponding to thin metallic film, for
separation d > 10(ε/ns)

1/2, where ε is the dielectric constant, and suggest
a new experiment to test the theory. The relation between friction and heat
transfer is also briefly commented on.

1. Introduction

A great deal of attention has been recently devoted to double-layer systems in which two
parallel quasi-two-dimensional (2D) subsystems (electron or hole gases) are separated by
a potential barrier thick enough to prevent particles from tunnelling across it but allowing
interaction between the particles on either side of it. Some time ago, Pogrebinskii and later
Price [1] predicted that the Coulomb interaction between two 2D electron systems will induce
a frictional drag force between the layers: a current in one film will induce a current in the
adjacent film. The first frictional drag experiment was performed by Gramila et al for two
electron layers [2,3] and by Sivan, Solomon and Shtrikman for an electron–hole system [4]. In
these experiments a current is drawn in the first layer, while the second layer is an open circuit.
Thus no dc current can flow in the second layer, but an induced electric field occurs that opposes
the ‘drag force’ from the first layer. These experiments spurred on a large body of theoretical
work both on electron–hole systems [5] and on electron–electron systems [6–15]. Most of this
work focused on interlayer Coulomb interaction, the most obvious coupling mechanism and
the one considered in the original theoretical papers [1], though the contributions due to an
exchange of phonons between the layers have also been considered [3,8,9,16]. The origin of
Coulomb drag is quantum and thermal fluctuations of the charge and current densities and it
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can be considered as the dissipative part of the van der Waals interaction. The static aspects
of the van der Waals interaction are well understood, and from the theory of Lifshitz [17] it is
known that one must distinguish between two distance regimes:

(a) The non-retarded limit, where the separation between bodies d is small compared to the
wavelengths λ ∼ c/ω0, where ω0 is a characteristic frequency of the charge fluctuation,
and c the light velocity; the interaction is determined by the fluctuations in an instantaneous
Coulomb field. For metal, ω0 ∼ ωp, where ωp is the plasma frequency.

(b) Retardation effects become important when d > λ. On the other hand, we have shown
in references [18, 19] that, when calculating the dissipative part of the van der Waals
interaction for two semi-infinite bodies in relative motion, retardation effects become
important for d > c/ω0, where ω0 ∼ (ωpτ)ωp and τ is the Drude relaxation time.

For ωp ∼ 1016 s−1 and τ ∼ 10−14 s, retardation effects become important for very short
distances d > 1 Å. However, for 2D systems there has been no investigation of the role
of retardation effects in the frictional drag experiments. For large distances the retarded
contribution to the frictional drag becomes important, and it is interesting to compare this
contribution to the non-retarded contribution. To evaluate the retarded contribution from
photon exchange we use the general theory of the fluctuating electromagnetic field developed
by Rytov [20] and applied by Lifshitz [17] for studying the conservative part, and by us [18] for
studying the dissipative part of the van der Waals interaction. In this approach the interaction
between the bodies is mediated by the fluctuating electromagnetic field which is always present
in the vicinity of any collection of atoms. Beyond the boundaries of a solid this field consists
partly of travelling waves and partly of evanescent waves which are damped exponentially
with the distance away from the surface of the body. The method that we use for calculating
the frictional drag force between two nearby 2D systems is quite general, and is applicable
to any body at arbitrary temperature. It takes into account retardation effects, which become
important for large enough separation between the bodies.

We shall calculate the frictional stress σ = γ v acting on the electrons in layer 1 due to
the current density J2 = n2ev in layer 2, where n2 is the carrier concentration (per unit area).
If no current is allowed to flow in layer 1 (open circuit), an electric field E1 develops whose
influence cancels the frictional stress σ between the layers. The frictional stress σ = γ v must
equal the induced stress n1eE1, so

γ = n1eE1/v = n1n2e2E1/J2 = n1n2e2ρ12

where the transresistivity ρ12 = E1/J2 is defined as the ratio of the induced electric field
in the first layer to the driving current density in the second layer. The transresistivity is
often interpreted in terms of a drag rate which, in analogy with a Drude model, is defined by
τ−1

D = ρ12n2e2/m∗ = σ/n1m∗v.
We find that for modulation-doped semiconductor quantum wells, retardation effects are

not important under typical experimental conditions, supporting earlier calculations where
retardation effects have always been neglected [5–15]. However, although some previous
calculations for friction drag force between two-dimensional semiconductor systems are
equivalent to ours, other approaches were very different. The present derivation offers an
alternative insight and is more general. A striking new result that we find is that for systems
with high 2D electron density, e.g. thin metallic films, retardation effects become crucial and in
fact dominate the frictional shear stress σ . To test the theoretical predictions presented below,
we therefore suggest performing experiments on thin metallic layers grown on insulating
substrates and separated by thin insulating layers. For example, for two thin (∼monolayer)
silver films separated by d ∼ 100 Å, we estimate that the induced voltage U1 in metal film
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1, due to a current J2 in layer 2, will be of order U1 ≈ 10−8 U2, where U2 is the driving
voltage applied to metal film 2. Thus if U2 ≈ 1 V, the induced voltage will be of order 10 pV
which it should be possible to detect experimentally. We note that the study of this problem
is also of direct interest in the context of sliding friction, since the electronic friction probed
when two metallic bodies slide relative to each other should be the same as the electronic drag
force probed by the transresistivity measurement; see figure 1. The electronic sliding friction
(usually called vacuum friction) has recently been invoked to explain experimental results for
the damping of a small metal particle vibrating in the vicinity of a flat metal surface [21], but
this explanation is controversial [19], and it is clear that independent studies of the electronic
friction would be of great interest.
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Figure 1. Left: a metallic block is sliding relative to the metallic substrate with the velocity v. An
electronic frictional shear stress σ will act on the block (and on the substrate). Right: the shear
stress σ can be measured if instead of sliding the upper block, a voltage U2 is applied to the block
resulting in a drift motion of the conduction electrons (velocity v). The resulting frictional stress
σ on the substrate electrons will generate a voltage difference U1 (proportional to σ ) as indicated
in the figure, which can be measured experimentally.

2. Calculation of the fluctuating electromagnetic field

We consider two parallel 2D electron layers separated by a distance d. We introduce two
reference systems K and K ′, with coordinate axes xyz and x ′y ′z′. The xy- and x ′y ′-planes
coincide with layer 1, with the x- and x ′-axes pointing in the same direction, and the z- and
z′-axes pointing toward layer 2. In the K-system both layers are at rest. Assume now that in
layer 2 the conduction electrons move with the drift velocity v, corresponding to the current
density j2 = n2ev, while no current flows in layer 1. The reference system K ′ moves with
velocity v along the x-axis relative to frame K . In the K ′-frame there is no current density in
layer 2, while the surrounding dielectric moves with velocity −vx̂. Following Lifshitz [17], to
calculate the fluctuating field we shall use the general theory due to Rytov, which is described
in his book [20]. This method is based on the introduction of a ‘random’ field in the Maxwell
equations ( just as, for example, one introduces a ‘random’ force in the theory of Brownian
motion of a particle). In the K-system for z < d for a monochromatic field (time factor
exp(−iωt)) in a dielectric, non-magnetic medium, these equations are

∇ × E = i
ω

c
B (1)

∇ × H = −i
ω

c
D +

4π

c
( j1 + j1f )δ(z) (2)

where, following Rytov, we have divided the total current density jtot in a layer into two
parts, jtot = j + jf , the fluctuating current density jf associated with thermal and quantum
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fluctuations and the current density j induced by the electric field E:

jα(r) =
∫

d2r ′ σαβ(r − r′)Eβ(r′) (3)

where r is a 2D vector in the xy-plane, σ1αβ(r − r′) is the conductivity tensor in layer 1. D,
H and B are the electric displacement field, the magnetic and the magnetic induction fields,
respectively. For a non-magnetic medium B = H and D = εE, where ε is the dielectric
constant of the surrounded media. According to the fluctuation-dissipation theorem [22], the
correlation function of the fluctuating current density jf , determining the average value of the
product of the components of jf at two different points in space, is given by the formulae

〈jf α(r, ω)j ∗
fβ(r′, ω′)〉 = 〈jf α(r, ω)j ∗

fβ(r′, ω)〉ωδ(ω − ω′)

〈jf α(r, ω)j ∗
fβ(r′, ω)〉ω = h̄ω

π

(
1

2
+ n(ω)

)
Re σαβ(r − r′, ω)

(4)

where the Bose–Einstein factor

n(ω) = 1

eh̄ω/kB T − 1

and where T is the temperature and Re σαβ(r − r′) is the real part of the conductivity. We
represent the current density in the form of a Fourier integral:

j(r) =
∫

d2q j(q)eiq·r (5)

where q is a 2D vector in the xy-plane. For the Fourier components jf (q), the correlation
function corresponding to the spatial correlation (4) is

〈jf α(q, ω)j ∗
fβ(q′, ω)〉ω = h̄ω

4π3

(
1

2
+ n(ω)

)
Re σαβ(q, ω)δ(q − q′) (6)

where

σαβ(q, ω) =
∫

d2r σαβ(r, ω)e−iq·r.

For the layers with the assumed isotropy in the xy-plane, the conductivity tensor can be written
in the form

σαβ(q, ω) = qαqβ

q2
σl(q, ω) +

(
δαβ − qαqβ

q2

)
σt (q, ω) (7)

where σt (q, ω) and σl(q, ω) are the transverse and longitudinal conductivity of the layer.
After decomposition of the components of the electromagnetic field into a Fourier integral,

the general solution of the Maxwell equations for z < d can be written in the form

E =




∫ ∞

−∞
{veipz + we−ipz}eiq·r d2q 0 < z < d∫ ∞

−∞
u1e−ipzeiq·r d2q z < 0

(8)

B =




∫ ∞

−∞
{([q × v] + p[ẑ × v])eipz

+ ([q × w] − p[ẑ × w])e−ipz}eiq·r d2q 0 < z < d∫ ∞

−∞
([q × u1] − p[ẑ × u1])e−ipzeiq·r d2q z < 0

(9)
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where v, w and u1 satisfy the transversality conditions

v · q + pvz = 0 w · q − pwz = 0 u1 · q + pu1z = 0 (10)

where

p =
√(

ω

c

)2

ε − q2 (11)

and ẑ is a unit vector along the z-axis. We now decompose the electromagnetic field into s-
and p-polarized waves. The electric field E is in the plane determined by the vectors q̂ = q/q

and ẑ for the p-polarized waves and perpendicular to this plane along the vector n = ẑ × q̂

for s-polarized waves. The boundary conditions at z = 0 for s- and p-polarized waves are
determined by

En(z = +0) = En(z = −0)

dEn

dz

∣∣∣∣
z=+0

− dEn

dz

∣∣∣∣
z=−0

= −4π iω

c2
(σ1t (q, ω)En + jf 1n)

(12)

Eq(z = +0) = Eq(z = −0)

dEq

dz

∣∣∣∣
z=+0

− dEq

dz

∣∣∣∣
z=−0

= −4π ip2

εω
(σ1l(q, ω)Eq + jf 1q)

(13)

where Eq = q̂ · E, En = n · E and so on. From (12) and (13) we can obtain the following
equations:

vq + R1pwq = − 4πpjf 1q

εω(ε1p + 1)
(14)

vn + R1swn = − 4πωjf 1n

pc2(ε1s + 1)
(15)

where vq = q̂ · v and so on, and

R1s (1p) = ε1s (1p) − 1

ε1s (1p) + 1
ε1s = 4πωσ1t

pc2
+ 1 ε1p = 4πpσ1l

ωε
+ 1.

The Maxwell equations in the K ′-system for z > 0 have the same form as (1), (2) with
j → j2 and jf → jf 2. However, to first order in v/c the relations between D, E, and B, H

are [23]

D = εE − (ε − 1)
v

c
x̂ × B (16)

H = B − (ε − 1)
v

c
x̂ × E. (17)

Under a Lorentz transformation, with accuracy to the term linear in v/c, we have ω′ = ω−qxv

and q′ = q − x̂ωv/c2. Note also that p is invariant under the Lorentz transformation,
i.e. p = p′. It can be shown that the last terms in (16), (17) give rise only to a coupling
between s- and p-polarized waves. However, it can be shown [18] that this coupling gives a
correction ∼(v/c)2 to the frictional drag force between the layers, so this term can be omitted.
In the K̂ ′ reference frame for z > 0 the Maxwell equations have the same form (1) and (2)
with E and B replaced by E′ and B′, the index 1 changed to 2, δ(z) replaced by δ(z−d). The
field E′ and B′ are given by the same formulae (8), (9) with the r-coordinate, ω, q changed
to r′, ω′, q′, and v, w replaced by v′, w′ for 0 < z < d , and u1 replaced by u2 and a change
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in the sign of p for z > d (the waves now propagate along the positive z-direction). From the
boundary conditions for the s- and p-polarized waves we get the equations

w′
q′ + R2p(q′, ω′)e2ipdv′

q′ = −4πpjf 2q′eipd

εω′(ε2p + 1)
(18)

w′
n′ + R2s(q

′, ω′)e2ipdv′
n′ = −4πω′jf 2n′eipd

pc2(ε2s + 1)
. (19)

The relations between the fields in the reference frames K and K ′ are determined by the Lorentz
transformation. As was shown in reference [18], such a Lorentz transformation gives terms of
the order v/c which couple the s- and p-polarized waves, but this results in a contribution to
the frictional drag of the order of (v/c)2. Thus we can take this transformation in zero order
in v/c, so obtaining v′

q′(ω′) = vq(ω), v′
n′(ω′) = (ω′/ω)vn(ω) and similar equations for w.

After the transformation, the solution of the system of equations (14), (15), (18), (19)) takes
the form

vq = 4πp

2pε

[
jf 2q′(q′, ω′)eipdR1p(q, ω)

(ε2p(q′, ω′) + 1)ω′ − jf 1q(q, ω)

(ε1p(q, ω) + 1)ω

]
(20)

wq = 4πp

2pε

[
jf 1q(q, ω)e2ipdR2p(q′, ω′)

(ε1p(q, ω) + 1)ω
− jf 2q′(q′, ω′)eipd

(ε2p(q′, ω′) + 1)ω′

]
(21)

vn = 4πω

2spc2

[
jf 2n′(q′, ω′)eipdR1s(q, ω)

(ε2s(q′, ω′) + 1)
− jf 1n(q, ω)

(ε1s(q, ω) + 1)

]
(22)

wn = 4πω

2spc2

[
jf 1n(q, ω)e2ipdR2s(q

′, ω′)
(ε1s(q′, ω) + 1)

− jf 2n′(q′, ω′)eipd

(ε2s(q′, ω′) + 1)

]
(23)

vz = −qvq

p
wz = qwq

p
(24)

where we have introduced the notation

2p = 1 − e2ipdR2p(q′, ω′)R1p(q, ω)

2s = 1 − e2ipdR2s(q
′, ω′)R1s(q, ω).

3. Calculation of the frictional drag force between 2D systems

The frictional drag stress σ which acts on the conduction electrons in layer 1 can be obtained
from the xz-component of the Maxwell stress tensor σij , evaluated at z = ±0:

σ = 1

8π

∫ +∞

−∞
dω {[ε〈EzE

∗
x 〉 + 〈BzB

∗
x 〉 + c.c.]z=+0 − [· · ·]z=−0}. (25)

Here 〈· · ·〉 denotes statistical averaging over the fluctuating current densities. The averaging
is carried out with the aid of (6). Note that the components of the fluctuating current density
jf 1 and jf 2 refer to different layers, and are statistically independent, so the average of their
product is zero. Expanding the electric field and magnetic induction in Fourier series we obtain

σ = 1

8π

∫
dω d2q {[ε〈Ez(q, ω)E∗

x (q, ω)〉 + 〈Bz(q, ω)B∗
x (q, ω)〉 + c.c.]z=+0 − [· · ·]z=−0}.

(26)
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For a given value of q it is convenient to express the components Ex and Bx in terms of the
components along the vectors q̂ and n:

Ex = (qx/q)Eq − (qy/q)En (27)

Bx = (qx/q)Bq − (qy/q)Bn. (28)

After substitution of expressions (27), (28) into (26) and taking it into account that the term
which is proportional to qy is equal to zero [18], we obtain

σ = 1

8π

∫
dω d2q

qx

q
{[ε〈Ez(q, ω)E∗

q(q, ω)〉 + 〈Bz(q, ω)B∗
q (q, ω)〉 + c.c.]z=+0 − [· · ·]z=−0}

(29)

where

Ez(z = +0) = (vz + wz) = (q/p)(wq − vq) = (qp∗/|p|2)(wq − vq) (30)

Ez(z = −0) = u1z = (q/p)uq = (q/p)(wq + vq) (31)

Eq(z = +0) = Eq(z = −0) = vq + wq (32)

Bz(z = +0) = (qc/ω)(vn + wn) = Bz(z = −0) = (qc/ω)u1n (33)

Bq(z = +0) = (pc/ω)(wn − vn) (34)

Bq(z = −0) = (pc/ω)u1n. (35)

After substituting these expressions into formula (29) we obtain

σ = 1

4π

∫ +∞

0
dω

∫
d2q qx

(
ε

|p|2 [(p + p∗)(〈|wq|2〉 − 〈|vq|2〉

− 〈|vq + wq|2〉) + (p − p∗)〈(vqw∗
q − vqw∗

q)〉]

+

(
c

ω

)2

[(p + p∗)(〈|wn|2〉 − 〈|vn|2〉 − 〈|vn + wn|2〉)

− (p − p∗)〈(vnw∗
n − vnw∗

n)〉]
)

(36)

where we integrate only over positive values of ω, which gives an extra factor of two.
Substituting (20) and (24) into (36) and taking it into account that p = p∗ for q < ω/c

and p = −p∗ for q > ω/c, we obtain

σ = h̄

8π3

∫ ∞

0
dω

∫
q<(ω/c)

√
ε

d2q qx

[
T1p(ω)T2p(ω − qxv)(n(ω − qxv) − n(ω))

|1 − e2ipdR1p(ω)R2p(ω − qxv)|2

− T1p(ω)(|1 − R2p(ω − qxv)|2 + |1 − e2ipdR2p(ω − qxv)|2)(n(ω) + 1/2)

|1 − e2ipdR1p(ω)R2p(ω − qxv)|2
]

+
h̄

2π3

∫ ∞

0
dω

∫
q>(ω/c)

√
ε

d2q qxe−2|p|d

× Im R1p(ω) Im R2p(ω − qxv)

|1 − e−2|p|dR1p(ω)R2p(ω − qxv)|2 (n(ω − qxv) − n(ω)) + [p → s]

(37)

where

Tip(ω) = 1 − |Rip|2 − |1 − Rip|2 = 16π Re σil(ω)p

ωε|εil + 1|2

Tis(ω) = 1 − |Ris|2 − |1 − Ris|2 = 16π Re σit (ω)ω

pc2|εit + 1|2 .
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The first integral in (37) is the contribution to the frictional drag force from propagating
electromagnetic waves. The second term in (37) is derived from the evanescent field.

4. Some limiting cases

Consider distances d � dW ∼ ch̄/kBT (at T = 3 K we have dW ∼ 106 Å). In this case we
can neglect the first integral in (37), put p ≈ iq and extend the integral over q to the whole
q-plane. Using these approximations, and in the linear approximation in the velocity v, the
second integral in (37) can be written as [18]

σ = h̄v

2π2

∫ ∞

0
dq q3e−2qd

∫ ∞

0
dω

(
− dn

dω

){
Im R1p(ω) Im R2p(ω)

|1 − e−2qdR1p(ω)R2p(ω)|2 + [p → s]

}
.

(38)

Let us describe the 2D layers in the RPA approximation. For q < kF (corresponding to
separations d > k−1

F , where kF is the Fermi wavevector of the degenerate electron gas system;
for a 2D electron layer with electron density ns ≈ 1.5 × 1011 cm−2, kF = (2πns)

1/2 ∼
106 cm−1) the transverse and longitudinal parts of the conductivity for a 2D electron layer can
be written in the form [24, 25]

σl = iωe2ns

q2εF

{
ωu

(ω + iγ )
√

u2 − 1 − iγ u
− 1

}
(39)

σt = −2ie2nsu(
√

u2 − 1 − u)

m∗(ω + iγ )
(40)

where u = (ω + iγ )/qvF , γ = 1/τ , vF = h̄kF /m∗ is the Fermi velocity, τ is a relaxation
time, εF = h̄2k2

F /2m∗ is the Fermi energy. In experiment [2, 3], m∗ = 0.067 me,
vF = 1.6 × 107 cm s−1, εF ∼ 60 K and the mobility µ ∼ 2 × 106 cm2 V−1 s−1, so
τ ∼ 7.6 × 10−11 s. Let us divide the integration over 0 < q < ∞ into the two parts
0 < q < ω/vF and ω/vF < q < ∞. In the first part of the integration, u > 1 and, taking the
limit u � 1, we obtain in this limit the Drude formula for the conductivity

σl = σt = ie2ns

m∗(ω + iγ )
. (41)

In the second part of the integration, u < 1 and, taking the limit u � 1, we obtain

σl = ωe2ns

q2εF

(u − i) (42)

σt = e2nsvF

εF q

where we put γ equal to zero because it makes only a small contribution in this limit.
Let us consider the case of small separation d when a = (2kBT d/h̄vF ) < 1. Introducing

the dimensionless variables q = x/2d and ω = (kBT /h̄)y, we obtain in this limit for
ay < x < ∞

Rp = λp(x + iay)

x2 + λp(x + iay)
≈ 1 − x2

λp(x + iay)
(43)

Rs = iλsy

iλsy − x2
(44)



The frictional drag force between quantum wells 867

and for 0 < x < ay

Rp = λ′
px

λ′
px − 2y2 − 2iyδ

(45)

Rs = λ′
sy

2xy + λ′
sy + 2ixδ

(46)

where

λp = 8πe2nsd

εm∗v2
F

λs = 8πad

(
e2ns

m∗c2

)

λ′
p = 2πnse

2

εm∗d

(
h̄

kBT

)2

λ′
s = 8πnse

2d

m∗c2
.

We note that expression (45) has a pole at

ω2 = 2πnse
2

εm∗ q (47)

which corresponds to the plasmon excitations [27]. After substituting (43)–(46) in (38) we
obtain for the frictional drag rate

τ−1
Dp ≈ 0.2360

(kT )2

h̄εF (qT F d)2(kF d)2
+ 10

(
kBT

εF

)5(
kBT

εT F

)2

γ (48)

τ−1
Ds ≈ 3.3 × 10−5

(
kBT

m∗c2

)(
4

kBT

h̄
+ γ

)
(49)

where τ−1
Dp and τ−1

Ds are the contributions from s- and p-polarized waves, respectively, qT F =
2e2m∗/h̄2ε is the single-layer Thomas–Fermi screening wavevector, εT F = h̄2q2

T F /2m∗. The
first term in (48) agrees with the results of Gramila et al [3] and Persson and Zhang [26]. From
comparison of (48) and (49) it follows that for

ns < nc ∼ 102

(
m∗kBT

πh̄2

)(
ε4h̄2kBT

m∗e4

)1/5

(50)

the contribution from p-polarized waves exceeds the contribution from s-polarized waves for
all distances d < h̄vF /kBT . However, for ns > nc the contribution from s-polarized waves
will dominate for d > 10(ε/ns)

1/2. For example, for T = 3 K and for the conditions
of the experiment of references [2, 3], nc ∼ 1012 cm−2, and we find that in this case the
retardation effects are small. However, retardation effects are important for high electron
densities. For example, assuming that ε = 10 and ns ≈ 1015 cm−2, which corresponds
to about one monolayer of silver, we find that the contribution to frictional drag from the
retardation effects will dominate for d > 102 Å. This is illustrated in figure 2(a) which shows
the shear stress when the relative velocity v = 1 m s−1. We have performed calculations with
ε = 1 (the result for an arbitrary ε can be obtained from these calculations by using the scaling
τ−1

Dp ∼ ε2 and τ−1
Ds is independent of ε) and ns ≈ 1015 cm−2 for two different temperatures,

T = 273 K and 77 K, and the s- and p-wave contributions are shown separately. From these
calculations we obtain that the s-wave contribution dominates for d > 15 Å with ε = 1 and
for d > 45 Å with ε = 10. In figure 2(b) we show the same quantity for two quantum wells
at T = 3 K and with ns = 1.5 × 1011 cm−2, m∗ = 0.067 me, vF = 1.6 × 107 cm s−1

and τ = 7.6 × 10−11 s, and with ε = 1. In this case the p-wave contribution dominates for
d < 1000 Å with ε = 1 and for d < 3 × 103 Å with ε = 10.
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Figure 2. The shear stress as a function of the distance d between the surfaces (the log function
is to the base 10). (a) For one-monolayer silver films for two different temperatures. The s- and
p-wave contributions are shown separately. In the calculation, τ = 4 × 10−14 s and 20 × 10−14 s
for T = 273 K and 77 K, respectively. We have assumed ns = 1.05 × 1019 m−2, m∗ = me and
vF = 1.4 × 106 m s−1. (b) For quantum wells at T = 3 K. In the calculation, τ = 7.6 × 10−11 s,
ns = 1.5 × 1015 m−2, m∗ = 0.067 me and vF = 1.6 × 105 m s−1.

Let us estimate the voltage U1 induced in a thin silver film (layer 1; open circuit) when
a current flows in another parallel silver film (layer 2). A voltage difference of order 1 pV
can be measured with standard equipment, so if U1 is of the order 1 pV or larger, it may
be possible to probe retardation effects with this experimental set-up. If L denotes the
length of the metallic films (assumed identical) in the direction of the driving current, then
U1 = LE1 and U2 = LE2 = LJ2/σ2 where σ2 = n2e2τ2/m∗ is the conductivity (τ2 is a
Drude relaxation time and m∗ the electron effective mass). Thus, using the equation (see
the introduction) γ = n1n2e2E1/J2 with E1/J2 = U1/(σ2U2) = (U1/U2)m∗/(n2e2τ2) gives
U1 = (γ τ/m∗n1)U2. In a typical case, τ = 4 × 10−14 s and n1 ≈ 1015 cm−2, and from
figure 2(a), γ ≈ 10−6 N s m−2, giving U1 ≈ 10−8 U2. Thus if the applied voltage U2 ≈ 1 V,
the induced voltage would be of order 10 pV, which it should be possible to measure.

5. The frictional drag force between 3D systems

For high electron densities, when the thickness of the layers h � n−1/3, where n is a volume
electron density, the electrons behave as in 3D systems. It was shown in reference [18] that for
3D systems the frictional drag stress is also given by formula (38), where the electromagnetic
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reflection coefficients are

Rip = εip − εsi

εip + εsi

Ris = p − si

p + si

(51)

where εi is the complex dielectric constant for layer i, and

si =
√

ω2

c2
εi − q2. (52)

Consider two identical 3D layers described by the dielectric function

ε(ω) = 1 − ω2
p

ω(ω + i/τ)
(53)

where τ is the Drude relaxation time and ωp the plasma frequency. For kBT > h̄γ , for small
frequencies and d < (c/ωp)(h̄γ /kBT )1/2,

Im Rp ≈ 2εω

ω2
pτ

Re Rp ≈ 1

Re Rs ≈ 0 Im Rs ≈ 4

(
ωp

c

)2
ω

γ q2
for q2 >

(
ωp

c

)2
ω

γ
.

Then, taking into account that for 3D systems ns = nh, equation (38) gives

τ−1
Dp = 13.32

(εkBT )2

h̄εF (kF d)2(kT F d)2(kF h)(ωpτ)2
(54)

τ−1
Ds = e2(kBT )2(ωpτ)2

8πh̄h(m∗c2)2
(55)

where k2
T F = 6πne2/εF is the 3D Thomas–Fermi screening wavevector and kF = (3π2n)1/3

is the 3D Fermi wavevector. From comparison of (54) with (55) we conclude that for
d > ε1/2(c/ωp)(ωpτ)−1, the s-wave contribution exceeds the p-wave contribution. For
‘normal’ metal at room temperature, ωp ∼ 1016 s−1, ωpτ ∼ 100, so the s-wave contribution
dominates for d > 10 Å with ε = 10. Thus, in the case of the dissipative van der
Waals interaction between 3D bodies, retardation effects become important for much shorter
distances than for the conservative one, where the retardation effects become important for
d > c/ωp [17].

Figure 3 shows the calculated frictional shear stress for two semi-infinite silver bodies
moving with the relative velocity v = 1 m s−1 parallel to the flat surfaces. Results are shown
for the s- and p-wave contributions, where in the latter case we have taken into account non-
local effects (the dashed lines show the result when the local (long-wavelength) dielectric
function is used). Results are shown for two different temperatures, T = 70 K and 300 K,
and the observed temperature dependences reflect that of the temperature prefactor T 2 in the
expression for the shear stress as well as the temperature dependence of the Drude relaxation
time τ .

6. Relation between friction and heat transfer

The frictional shear stress studied above is closely related to the heat transfer from one solid
to another when the solids have different temperatures. For large separation, the heat transfer
is given by Stefan’s law:

Jz = π2k4
B

60h̄3c2
0

(T 4
1 − T 4

2 ) (56)
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Figure 3. The shear stress as a function of the distance d between the surfaces of two semi-
infinite silver bodies. The s- and p-wave contributions are shown separately and for two different
temperatures, T = 70 K and 300 K. The p-wave contribution has been calculated using a local
dielectric function (dashed lines) and using a theory which takes into account non-locality within
the jellium model (solid line).

where T1 and T2 are the temperatures of solids 1 and 2, respectively. This formula corresponds
to emission of real photons. However, for small separation d it is possible for the evanescent
near field to transfer energy from one solid to the other. This corresponds to photon tunnelling.
In general, the heat flux (energy flow per unit area and unit time) is given by a formula very
similar to that for the frictional stress [28–30]:

Jz = h̄

8π3

∫ ∞

0
dω ω

∫
q<ω/c

d2q

[
(1 − |R1p(ω)|2)(1 − |R2p(ω)|2)(n1(ω) − n2(ω)

|1 − e2ipdR1p(ω)R2p(ω)|2
]

+
h̄

2π3

∫ ∞

0
dω ω

∫
q>ω/c

d2q e−2|p|d

× Im R1p(ω) Im R2p(ω)

|1 − e−2|p|dR1p(ω)R2p(ω)|2 (n1(ω) − n2(ω)) + [p → s] (57)

where

n1(ω) = (eh̄ω/kB T1 − 1)−1 (58)

is the Bose–Einstein factor of solid 1 and similarly for n2. Figure 4(a) shows the heat transfer
between two semi-infinite silver bodies separated by the distance d and at the temperatures
T1 = 273 K and T2 = 0 K. The s- and p-wave contributions are shown separately, and the
p-wave contribution has been calculated using non-local optics (the lower solid line shows the
result obtained using local optics). It is remarkable how important the s contribution is even
for short distances. The detailed distance dependence of Jz has been studied by Polder and
Van Hove [28] within the local optics approximation, and the analysis will not be repeated
here. The non-local optics contribution to (Jz)p, which is important only for d < l (where l is
the electron mean free path in the bulk), is easy to calculate for free-electron-like metals. The
non-local surface contribution to Im Rp is given by [26]

(Im g)surf = 2ξ
ω

ωp

q

kF
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Figure 4. (a) The heat-transfer flux between two semi-infinite silver bodies, one at temperature
T1 = 273 K and another at T2 = 0 K. (b) The same as (a) except that we have reduced the
Drude electron relaxation time τ for solid 1 from a value corresponding to a mean free path
vF τ = l = 560 Å to 20 Å. (c) The same as (a) except that we have reduced l to 3.4 Å.

where ξ(q) depends on the electron density parameter rs but typically ξ(0) ∼ 1. Using this
expression for Im Rp in (57) gives the (surface) contribution:

Jsurf ≈ ξ 2k4
B

ω2
pk2

F d4h̄3 (T 4
1 − T 4

2 ).

Note from figure 4(a) that the local optics contribution to (Jz)p depends nearly linearly on
1/d in the distance interval studied, and that this contribution is much smaller than the s-wave
contribution. Both of these observations differ from those of reference [29], where it is stated
that the s contribution can be neglected for small distances and that the p-wave contribution
(within local optics) is proportional to 1/d2 for small distances. However, for the very high-
resistivity materials, the p-wave contribution becomes much more important, and a crossover
to a 1/d2 dependence of (Jz)p is observed at very small separations d. This is illustrated in
figures 4(b) and 4(c), which have been calculated with the same parameters as for figure 4(a),
except that the electron mean free path has been reduced from l = 560 Å (the electron mean free
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path for silver at room temperature) to 20 Å (roughly the electron mean free path in lead at room
temperature) (figure 4(b)) and 3.4 Å (of order the lattice constant, representing the minimum
possible mean free path) (figure 4(c)). Note that when l decreases, the p contribution to the heat
transfer increases while the s contribution decreases. Since the mean free path cannot be much
smaller than the lattice constant, the result in figure 4(c) represents the largest possible p-wave
contribution for normal metals. However, the p-wave contribution may be even larger for other
materials, e.g. semimetals, with lower carrier concentration than in normal metals. This fact
has already been pointed out by Pendry [29]: the p-wave contribution for short distances is
expected to be maximal when the function

Im Rp ≈ Im
ε − 1

ε + 1
= Im

[
1 − 2

ω

ωp

(
ω

ωp

+
i

ωpτ

)]−1

is maximal with respect to variations in 1/τ . This gives

ωpτ = 2kBT

h̄ωp

where we have used that typical frequencies ω ∼ kBT /h̄. Since the DC resistivity ρ =
4π/(ω2

pτ), we get (at room temperature) ρ ≈ 2πh̄/kBT ≈ 0.14 ; cm.

7. Summary and conclusions

We have used a general theory of a fluctuating electromagnetic field to calculate the frictional
drag force between 2D and 3D electron systems. The separation d between the parallel
electron layers is assumed to be so large that the only interaction between the layers is via
the electromagnetic field associated with thermal and quantum fluctuations in the layers; the
resulting friction force can be considered as the dissipative part of the van der Waals interaction.
A general formula has been obtained, in which the frictional drag force is expressed through the
electromagnetic reflection coefficients for s and p waves. We have found that the non-retarded
Coulomb interaction, connected with evanescent p-polarized waves, is the dominant process
for small layer separations and small electron densities. For high electron densities, retardation
effects (associated with evanescent s waves) become very important, and we have suggested a
new experiment, involving thin metallic films, in which the theory can be tested. We have shown
that retardation effects are even more important for interaction between 3D electron systems.
For very large separations the interaction is dominated by the travelling electromagnetic waves,
which result from black-body radiation. However, the latter interaction appears negligible in
comparison with phonon-mediated processes. Finally, we have pointed out the close relation
between heat transfer and friction.
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